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Abstract

The boundedness, global attractivity, oscillatory and periodicity of the
nonnegative solutions of the difference equation of the form

Tn—k

_— ni= 0.1,...
f("rﬂ‘) "':mn—k+1)

Tntl = o+

is investigated, where & > 0, k € N and f : RY — R, is a continuous
function nondecreasing in each variable.

1 Introduction

We investigate the behavior of the (positive) solutions of a difference equation

of the form
Tn—k

f(xnr veey xn«-k-\‘-l) ’
for the various values of the nonnegative parameter .. The motivation of this
paper is the second order nonlinear rational recursive sequence

Tpy1 = @+ TL=0,1,... (1)

Tnt1 = ﬁ =+ x::__l , = 172: (2)

n

where 3 as well as the initial values zg, z; are positive real numbers, posed in an
open problem by Ladas in [11], where the following conjecture was formulated,
which almost at the same time also was discussed in [1]:
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Conjecture 5.2.4 [11]: Every positive solution of Equ. (2) is bounded if and
only if B > 1. Furthermore, if 3 = 1, then every positive solution converges to a
period two solution and, if 8 > 1, then every positive solution converges to the

equilibrium 3 + 1.

A more general version of (2) was discussed in [4], where the behavior of the
positive solutions of the difference equation

a+ Bxy + YTn-1

Ais , n=0,1,.. (3)

Tntl =

is investigated. Again here the parameters «, 3,7, A and the initial conditions
z_; and xo are positive real numbers. By the change of variables z, = Ay,
Equ. (3) reduces to the difference equation

P+ qYn + TYn—1
yn+1=—1:_yn—n’ TL=0,1,... (4)

where
a

p== a=5, end r=

NE

The following trichotomy result was proved in [4]:

Theorem A. Consider Equ. (4). If it holds r = g + 1, then every solution
converges to period-two solution, if 7 < g + 1, then the equilibrium is globally
asymptotically stable and if v > q + 1, then there exist unbounded solutions.

The statement in case r = g + 1 is a special case of the main result in [17].
One of the first results of this kind is Theorem 5.1 in [3]. In the articles [2], [13]
and [14], some global convergence results were obtained which can be applied
to some nonlinear difference equations in proving that every solution of these
ones converge to a period-two solution, see also [15]. In [7] the full limiting
sequences method is used to prove a result of such kind. A closely related result
concerning the periodic character also can be found in [20].

Assuming for a moment that p = g =: § Equ. (4) becomes

Yn—
yﬂ+1 =.6+ l(1+;n)s n=0) 11<-- (5)

Hence if we set g(u) := 2(1+u), then Theorem A says that if it holds g(8) = 1,
then every solution of Equ. (5) converges to a period-two solution, if ¢(8) > 1,
then the equilibrium is globally asymptotically stable and if g(3) < 1, then
there exist unbounded solutions. Also, if g(u) = u, Conjecture 5.2.5 in [11] and



Theorem 4.1 in [1] say that if g(8) = 1, then every solution of Equ. (2) converges
to a period-two solution, while Theorem 5.2 in [1] says that if g(3) > 1, then
every positive solution converges to the equilibrium.

Motivated by these observations in this paper we investigate the boundedness
character, the global attractivity as well as the oscillatory and periodic nature of
the nonnegative solutions of Equ. (1) where the parameter « is a nonnegative
real number, k is a fixed positive integer and f is a function satisfying the
following condition:

(H) f: RY — R, is a given continuous function, nondecreasing in each

variable and increasing in at least one.

In what follows we shall assume that the initial conditions _z,z_z+1, ..., Zo
are positive real numbers. Then under the condition (H) the corresponding
solution (z,) has positive terms.

The above mentioned properties which we seek for Equ. (1) were also dis-
cussed (see, e.g. [2, 3, 6-20]) for some nonlinear difference equations of several
forms.

In our analysis an important role plays the function

g(u) = f(u,...,u), u>0.

It is clear that under condition (H) the function g is increasing,.

2 Semicycle analysis about a positive equilib-
rium
A positive semicycle of a solution (z,) about a positive equilibrium Z consists of

a "string” of terms {x;, Z;+1, ..., Zm}, all greater than or equal to %, with [ > —1
and m < co and such that

either [=-1, or I>-1 and z_1<Z

and
either m=o00, or m<oo and I,y <Z

A negative semicycle of a solution (x,) about Z consists of a ”string” of
terms {z;,Z;41, .-, Tm}, all less than to Z, with { > —1 and m < co and such
that

either [=-1, or {>-1 and z;_1>%



and
either m=oco, or m<oo and zpy = Z.

The first semicycle of a solution starts with the term z_; and is positive if
z_y > T and negative if z_; < Z.

We say that a sequence (z,) oscillates about z* if for every ng € IN there
are p,q > ng such that (z, — z*)(z, — 2*) <0.

The following theorem is the main result in this section and it generalizes
Theorem 3.2 in [3].

Theorem 1. Let k € N be fized and consider a continuous function H mapping
the set (0,00)**1 into (0,00) and having the following properties: there is an
indez ig € {1,2,...,,k} such that H(z1, ..., 2k, ) s nonincreasing in each z;,1 €
{1,....,k} \ {io}, decreasing in z;,, and increasing in y. Let T be a positive
equilibrium of the difference equation

Tl = H( By o b1 8n—r); 0=0,1,2; . (6)

Then, except possibly for the first semicycle, every oscillatory solution with pos-
itive initial values has semicycles of length at most k.

Proof. Let (z,) be an oscillatory solution of Equ. (6) with at least two
semicycles. If a semicycle has length greater than or equal to k, then there is
an N > 0 such that either

IN-k <T L IN—k4+1,--IN O IN—kZ2ZT>LN_k41,--:ZN-

Using the conditions of the theorem in the first case we obtain

i1 = H(ZN, s TN-k+1, TN -k) < H(Z, ..., T) = 7,
and in the second case we get
y+1 = H(TNy ooy EN—kt1, TN—k) > H(:T:, angil) = E,

as desired.

Corollary 1. Assume that f is a given function satisfying assumption (H) and
let K be a positive equilibrium of Equ. (1). Then, exzcept possibly for the first
semicycle, every oscillatory solution with positive initial values has semicycles
of length at most k.



3 The case g(a) > 1

We start our analysis with the case g(a) > 1. Since any solution of Equ. (1)
with positive initial values stays above a, it follows that under the condition
(H) it holds g(u) > g(a) > 1, for all u > a.

If o = 0, then zero is the only nonnegative equilibrium. From Equ. (1) we
get
A < n € N.

(0)
Thus the zero equilibrium is a geometrically global attractor for the (positive)
solutions (see, Definition 1 in [12]).

Next assume that o > 0. In the following theorem we give exact bounds for
the solutions.

Theorem 2. Assume that g(o) > 1 and f satisfies assumption (H). Then Egqu.
(1) has a unique positive equilibrium K and every solution with positive initial
conditions x_r, ..., zg s bounded by the number

_ag(a)
()—1

Proof. The equilibrium points of Equ. (1) satisfy the equation

My := max{z_g,...,To} + ————

Flz)=z—-a——=0.

It is clear that the continuous function F : [0, c0) — R satisfies F(a) = —g—(";—)
0 and lim,_.4 o F(z) = 4co. Thus there is an K € (0, 00) such that F(K) = 0.
Now observe that for all z > y > a it holds

(x = y)g(z)(g(y) = 1) + z(g(=) — 9(y))
9(z)g(y)

which means that F' is increasing. Consequently K is the unique positive equi-
librium point of Equ. (1).
Now we recall that z,, > «, for n > 1. Thus we get

>0,

F(z) - F(y) =

Tpn—k e n —k
f(:rn:"':m'n-—k+1) ( )

Tny1 = a+ n=0,1,2, .. )



Let g := 1/g(). From (7), by induction, we obtain

T(e+1)m+r+1 < Ir—kqmﬂ = a;ff < Tp—i + '1_:'&:
for all m € NU {0} and r € {0, 1, ..., k}. This inequality implies that =, < Mo,

for all n, as desired.

The following results refers to the global attractivity of positive solutions.

Theorem 3. Assume that a > 0, g(c) > 1 and [ satisfies assumption (H). If
the function x — (g(z) — g(@))/(z — @) is decreasing on (a,+00), then every
positive solution of Equ. (1) converges.

Proof. By Theorem 2 every positive solution of Equ. (1) is bounded. Hence
there are finite liminf,—co #n =: | > @ and limsup,,_,, &n =: L > [. It is clear
that g(L) is a finite real number. Letting lim inf and lim sup in (1) and by using
the monotonicity of the function f we obtain

{ L
[Dad—re a0l I% gty 8
oy ) ®)

which imply that

(I —a)(g(L) — g(@)) = ag(e) + (1 — g(a))l

and
(L —a)(g(l) — g(@)) < ag(a) + (1 — g(a)) L.

If | = o, then from the first inequality in (8) we get { = 0 = a, a contradiction.
Hence [ > a and so g(I) > g(a).

Assume that [ < L. Then from our assumption we get (g({) —g(a))/(l—c) >
(9(L) — g(a))/(L — @) and therefore from the inequalities above it follows that

(1—g(a))l < (1 -g(a))L,
which is a contradiction. Hence [ = L.
Corollary 2. Assume that a > 0, g(a) > 1 and f satisfies assumption (H).

If the function g is strictly concave on (q,+o0), then every positive solution of
Equ. (1) converges.



Proof. We only need to notice that since g(u) is strictly concave the contin-
uous function G(z) := (g(u) — h(a))/(u — ) is decreasing on (a, 0o). The result
follows from Theorem 3.

Example 1. Consider the difference equation

BTrr (9)

$n+1=a+m

where h is a real increasing and strictly concave continuous function defined on
the interval [0,00) such that A(z) > 0 for z > 0. Thus the function f(z) :=
1+ h(z) is strictly concave and by Corollary 2 it follows that for each a > 0 and
B € (0,14 h(a)) all positive solutions of Equ. (9) (with positive initial values)

converge.

Example 2. Consider Equ. (1) where

Jlasgs vy ug) e= L a0l ul>,
a > 0 and the numbers p; € [0,1), 7 =1,2,...,k are such that p; + ps + ... +
pr =: p € (0,1). Here we have g(u) = 1 + uP, which is strictly concave since
g"(u) = p(p — 1)v*=2 < 0. Hence by Corollary 2 it follows that every positive
solution converges.

Example 3. Consider Equ. (1) where
f(ul, Uug, ...,uk) =1 +’717J.'f1 =+ ’}‘211:52 “+ ...+ 'ykuik,

a>0,v 2>0,j7=1,2,..,k, there is an index j; € {1,...,k} such that v;, > 0
and p; € [0,1), j=1,2,...,k. Here we have g(u) := 1+y1uP! +youf? +... 4y uf*,
which is strictly concave since g”(u) = 22?:1 v;p;i(p; — 1)uPi=? < 0. Thus the
conditions of Corollary 2 are satisfled and every positive solution converges.

In the sequel we shall denote by M; the positive number

ag(a)
gla) =1

Theorem 4. Assume a > 0, g(a) > 1 and the function f satisfies condition
(H). Assume also that g satisfies the inequality

M, =

ug(u) = vg(v)] < g*(@)|u—v], u,v€ e, My]. (10)



Then every solution of Equ. (1) converges to K.

Proof. Let (z,) be a solution. By Theorem 2 we know that for n > 1 each
term belongs to the interval (o, M), where My := M + max{z_g, ..., Zo}. Thus
(z,) is compact in the sense of the dynamical systems and let (¥m), (2m) be two
full limiting sequences (see, e.g. [3, 6, 7, 8]) such that

liminfz, = z0 < zm, Ym < Yo = limsupz,, (11)

for all integers m. It is clear that the domains of both these two-sided sequences
belong to the interval [, Mp)-
Assume that zp < 1. From the recursive formula (1) we obtain that

wSat s, m2at k. (12)
From the first inequality in (12) we obtain
W La+ i Sat o,
and so
v S ———— =M < M.
9(c)

Hence all the terms of the sequences belong to the interval [, M;].
Now from inequalities (12) and since g(z) is increasing we get

y09(yo) — z09(z0) _ ¥0g(¥o) — Z09(20) .,
oz)elo) 9%(a) < (5o — #0),

Yo — 20 <
which is a contradiction. Thus yg = 2.

Theorem 5. Assume o > 0, g(a) > 1 and the function f satisfies condition
(H). Assume also that g is differentiable and it satisfies one of the following
conditions:

)< é(g(v) “1?2, ve oM, (13)
52((";)) < 21;(1 - ﬁ)z, v € [o, Mi], (14)
g(v) < gle) = 1, v € [, My). (15)

g(w)(g(v)—-1) = agle)
Then every solution of Equ. (1) converges to K.



Proof. Let (z,) be a solution. Then, as in Theorem 4, we let (ym), (2m)
be two full limiting sequences satisfying (11) and (12), where recall that all the
terms of these two-sided sequences belong to the interval [c, Mj].

Assume that 2p < yg and let condition (13) holds. Define the function

_u 9(v)
<I>(u,'u) = E - g—(;)*——l
and let
¢(r) == &((1 —1)z0 + ry0, (1 — 7)yo +720)).

Because of (12) we have ¢(0) > 0 > ¢(1). Thus there is some ry such that
¢'(ro) < 0. This implies that at the point (ug,vo) = ((1 — 70)20 + ro¥0, (1 —
T0)Yo + Tozo) it holds &, < ®,. The latter says that ag’(vg) > (g(vo) — 1)?,
which is a contradiction. Thus 7y = 2.

Next assume that (14) holds. Define the function

« 1
T(u,v) =1—— — —
) =1 = o)
and let

Y(r) :=T((1 —r)z0 + ryo, (1 — T)yo + 720))-

Because of (12) we have ¥(0) > 0 > ¢(1). Hence there is some rq such that
¥'(ro) < 0. This says that at the point (ug,vo) := ((1—70)20 +70%0, (1 —70)y0 +
Tozg) it holds ¥, < T,. The latter implies that ag?(vy) < M;%¢’(v), which
contradicts to (14). Thus yp = 2.

Finally assume that (15) holds. Define the function

U
Z(u,v) i =u—a— —
) 9(v)
and let

¢(r) ==Z((1 — )20 + ry0, (1 = 7)yo + 720)).

Because of (12) we have {(0) = 0 > ((1). Thus there is some rg such that
¢'(ro) < 0. This implies that at the point (ug,v0) = ((1 — r0)20 + Towo, (1 —
T0)¥o+To%0) it holds Z,, < Z,. The latter says that Mg’ (vg) > g(vo)(g(vo) —1),
which is a contradiction. Thus yg = zg.

Example 4. Assume that g(u) = tu. Then it is not hard to see that condition
(10) is satisfied for all @ > 0 and ¢ > 0 such that ta > 2, while conditions
(13)-(15) are satisfied for 2ta > 3 + V5.



Example 5. Let @ > 1 and assume that g(u) = uf, where p > 0. Then
condition (13) is satisfied for all p > 0 such that p+2 < o + a~". Indeed, it is
enough to show that it holds

ap < vP — 20 4+ o17P, (16)

for all v € [@, M;]. The right part of (16) is increasing on [&, +00), so its min-
imum is attained at o. Thus condition (13) holds for ap < a?*! — 2a + al~#,
which leads to p+ 2 < af + a™*, as desired.

Condition (14) and (15) are satisfied whenever 2a” > p+ 2 + m

Theorem 6. Assume o > 0, g(@) > 1 and that the function f satisfies condition
(H). Let h be the function defined by

[

1
1=

h(u) == (17)

If the composition function h o h is concave on the interval (o, My|, then any
solution of Equ. (1) converges.

Proof. Let z, be a solution. As in Theorem 4 we obtain two full limiting
sequences (¥m), (zm) with all their terms in the interval (o, M;] satisfying (11)
and (12). Then we have yo < M; and so, from (11) we obtain

20 20
selmm e U Bt S
° 9(30) g(My)

Thus it holds

zp 2 = — =M
L= g(M1)
Again we obtain
Yo Yo
Yo < o+ <a+
9(20) g(N1)’
and so
«@
Yo S 1— 1 = M2:|
g(N1)
as well as
20 20
2o+ >a+
(o) g(Mz)’
and so
2p > - 1 = NQ.
1 - S0



Continuing in this way we get two sequences (M,) and (IV,) in the interval
[a, M) defined as follows

_ag(M,) _ ag(Nn—_1)
il g(M,) -1’ M = g(Nn—1) —1

where M; = 5‘('—%%.

It is easy to show that IV, is nondecreasing and M,, is nonincreasing se-
quence. Thus their limits M, N respectively exist and satisfy

N<z<ywsM,

as well as
M = h(N) and N = h(M). (18)

Assume that N < M. Then we observe that it holds N1 = h(h(a)) > . From
the concavity, the graph of hoh intersects the first diagonal of the plane at most
one point. Consequently we have M = N, which implies that zy = ;.

4 The case g(a) <1

In this section we shall assume that g(a) < 1. And although it is interesting to
know the behavior of all solutions of Equ. (1), we provide results only for the
case k = 2m+1 and the odd terms of the solutions do not affect the denumerator
in Equ. (1). This means that we focus our attention to the case

flur, uz, us, .., Uzm—1, Uam, Uom+1) = F(u1,us, ..., Ugm—1, U2m+1),
(where recall that f satisfies assumption (H)) and so Equ. (1) takes the form

Tn—2m—1
Tny1 =a+ : 19
il F(Engzn—%xn—é'-wxn—2m) ( )

Here we have
o(u) = Fl(u,u, ., u),
which is increasing. Thus so is its inverse g—!. Also, as we said above, assume

that g(a) < 1.
‘We have the following result:

Theorem 7. Assume a > 0, g(a) < 1, the function F satisfies condition (H)
and that T, n = —k,—k + 1,... is a solution of Equ. (19) such that for all
j=0,1,...,m it holds

a<z_g-1<g7 (1),

11



and
i -1 a sy
T_2j>g (—_g“l(l) — 1) =: P.

Then the subsequence (z2,) of the even terms converges to +oco, while the subse-
quence (ZTani1) of the odd terms converges to a, provided that g is not bounded.

If g is bounded and put

L:= uLu-Pm g(U),

then there exists a certain b € [a,g™*(1)] such that any point of the recursive
sequence bsy1 = L(bs — @), with by = b, is a limiting point of (Ton+1). In
particular in case a = 0 we conclude the following results:

If L < 1, then there is a subsequence of (Tany1) which converges to zero.

If L = 1, then any subsequence of (Ton+1) has a subsequence which converges
to a period 2m + 2 solution, and

If L > 1, then the sequence (Tont1) converges to zero.

Proof. We observe that

1
T_9m—1 g (1) |
a<zTi=a+ <a-+ =g (1
f(m(): T2, ---,$—2m) g(P) ( )
and
T_om T—_2m
To =a-+ S04+ —————=a+T_om > T_om > P.
F(Z1it gz sazme) g(g~1(1)) ™ "
Also
a<r3=a+ 2t <a+w=g_1(1)
fza, 2o, ..., T_omt2) g(P)
and
T_9m42 T_2m+2
Ta=a+ >ao+——T =a+ T omiz > T_gmaz > P.
F(@3,21, . T—2m+3) 9(g1(1)) e ¥

Repeating the same procedure by induction we obtain

-1
Tor_2m—1 g'(1) -1
a < Torye1 =0+ <a-+ =g (1
P f(2r, Zar—2, oy T2r—2m} g(P) ( )
and
Z2r—2m
Tory2 =a -+
A f(«’u"2r+1 3 L2r—1y ey $2r—2m+1)
Tor—2m
>a4+ —————— =a+ Tor_om > Tor—om > P.
g(g~1(1)) o e

12



Since the sequence of the even terms satisfies

To(r+1) = @ T T(r4+1)—(2m+2)
by induction we obtain that

T(2m+2)r42j = @ + L(2m42)(r—1)425 > - > TA + Taj,

where j € {—m,—(m - 1)...,0}.

Assume that a > 0. Then we get lim 25, = +oco.

Suppose that the function g is not bounded, which means that L = +oc.
Since the sequence of the odd terms is bounded, from Equ. (19) we see that it
converges to a.

Suppose that g is bounded. Then L < +o0 and from Equ. (19) we get

. Topy1—a 1

lim T (20)
Now consider any subsequence (z2,,+1) of (Z2,+1). Since the later is bounded,
there is a b € [a,g7(1)] and a subsequence (z2,,+1) of (Zas,+1) such that
lim £3,,+1 = b. From (20) we conclude that lim 5, 41_s(2m+2) = bs, Where
bs+1 = L(bs —a), for all s =0,1,.... and by := b.

Assume that a = 0. Then we have b,y = Lb, for all s =10,1,....

If L < 1, then obviously we get limb; = 0 and so 0 is a limit point of the
sequence (Zan+1)-

Assume that L = 1. Then we get bsuy = b, for all s = 0,1,..., which
means that the sequences (zg,,4+1-s(2m+2)) and (T2, 41— (s+1)(2m—+2)) have the
same limits for all s. Similarly we conclude that if ¥’ is a limit point of the
sequence (Z2,,+1+2j), then & is also a limit point of (T2, +14+2j—s(2m+2)), for
all 7 =0,1,..,m and all s =0,1,... . This implies that the sequence (z3,, +1)
has a subsequence which converges to a 2m + 2-cycle.

Finally, if L > 1, then we get limb, = +o00, which, in case b > 0, is im-
possible, since the sequence of the odd terms is bounded. Thus & = 0 for all
subsequences of (z2,+1). This completes the proof.

We close this section by stating the following:
Open problem 1. Investigate the boundedness character of the nonnegative
solutions of the difference equation

Bn_ok
g(zn) ’

Tpe1 =+ =1 )

13



where k € Nya > 0, 8 > g(a) and g : (0,00) — (0,00) @s a real continuous

increasing function on the interval (0, c0).

5 The case g(a) =1

In this section we consider Equ. (1)} when g(a) = 1. If @ > 0, then as in Theorem
2 we can see that Equ. (1) has a unique positive equilibrium K in (e, 00).
So we restrict ourselves to the case @ = 0 and g(0) = 1, where Equ. (1)

becomes

Tn—k
. =i Ly 21
Ty Bt D) 5 =)

Tpy1 =
=7 0

In [3] the following problem is posed:

Is there a solution of the difference equation

Tn—1
1+x,

Tpy1 = iy TafyTg > 0, n=0, 1,2,

such that z, — 0 as n — o007
The positive answer to a more general problem is given in [18]. For readers
who are interested in this area we leave the following problem:

Open problem 2. Let g(0) = 1 and k > 2. Is there a solution of Equ. (21)
such that z,, — 0 as n — co?

‘We have the following result:

Theorem 8. Assume thaot « = 0 and [ is continuous and increasing in all
its variables. If it holds g(0) = 1, then every positive solution of Equ. (21) is
bounded and it has a subsequence which converges to a period k + 1 solution of
the form p,0,0,...,0,p,0,0,...0,p, ... .

Proof. Let (z,) be a solution of Equ. (21) with positive initial values. From

(21) we get
Tn—k Tn—k

= Tn—k,
Tn, "'1$n-—k+1) g(O) "

In+1 = f(

which implies that
£y < ER{g g By Bors T ==k—0r= 1); el 1y

Therefore the solution (z,) is bounded.

14



Next let (wn,) be a limiting sequence of the solution (). From the general
theory of discrete dynamical systems (see, [5]) we know that (wy,) also is a
solution of Equ. (21). Let (¥m), (2m) be two full limiting functions of (w,)
satisfying relations (11) for (w,). If yg = 0, then 2y = 0 and so the conclusion
holds for this solution, since in this case the solution (w.,,) converges to 0.
Assume that yo > 0. Then from (21) we obtain

Yo
f(ZQ, teay Zo) ’

—k—1
yo = y <

FY-1,09-2)

which is true only if y_; = 20 = 0, for all j = 1,2,..., k. Again, from (21)
we obtain for all r = 0,1,... it holds y;4,k+1) = 0, for j = 1,2,...,k and
Yr(k+1) = Yo. This proves the result, since any full limiting sequence of a limiting
sequence is also a full limiting sequence, see [5].

Now assume that o > 0. We have the following:

Theorem 9. Assume that the continuous funetion f(zi, ..., 2x) is nondecreasing
in each variable and it satisfies g(a) = 1. Then for every nonoscillatory solution
(zn) of Equ. (1) the subsequences (Z(kt1)nsr), 7 =0,1,...,k, are convergent.

Proof. Let z, > K for all n € NU {0}. From (1) and by the conditions of
the theorem we obtain

Tp—p — K _ K(f(wm-“:xn—k+l) _Q(K))
f(mnr'-,xn—k-i-l) Q(K)f(mm-“amﬂ—k+1)

Tnt1 — K=

Trep —H
T f(@ns e Tnokt1)
By this inequality we obtain that there are finite lim,,— o Zaintr, T=0,1,..,k,
from which the result follows in this case. The case z, < K, for all n € NU{0},
is similar and is omitted.

L Tpk— K.

‘We finish this paper with another open problem:

Open problem 3. Provide sufficient conditions such that when g(a) = 1 the
result of Theorem 8 holds for every oscillatory solution of Equ. (1).
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